A NUMERICAL STUDY OF THE DIURNAL VARIATION OF METEOROLOGICAL PARAMETERS IN THE PLANETARY BOUNDARY LAYER

1968 ◽  
Vol 96 (5) ◽  
pp. 269-276 ◽  
Author(s):  
K. KRISHNA
2020 ◽  
Vol 12 (16) ◽  
pp. 2571
Author(s):  
Shaik Allabakash ◽  
Sanghun Lim

Planetary boundary layer (PBL) height plays a significant role in climate modeling, weather forecasting, air quality prediction, and pollution transport processes. This study examined the climatology of PBL-associated meteorological parameters over the Korean peninsula and surrounding sea using data from the ERA5 dataset produced by the European Centre for Medium-range Weather Forecasts (ECMWF). The data covered the period from 2008 to 2017. The bulk Richardson number methodology was used to determine the PBL height (PBLH). The PBLH obtained from the ERA5 data agreed well with that derived from sounding and Global Positioning System Radio Occultation datasets. Significant diurnal and seasonal variability in PBLH was observed. The PBLH increases from morning to late afternoon, decreases in the evening, and is lowest at night. It is high in the summer, lower in spring and autumn, and lowest in winter. The variability of the PBLH with respect to temperature, relative humidity, surface pressure, wind speed, lower tropospheric stability, soil moisture, and surface fluxes was also examined. The growth of the PBLH was high in the spring and in southern regions due to the low soil moisture content of the surface. A high PBLH pattern is evident in high-elevation regions. Increasing trends of the surface temperature and accordingly PBLH were observed from 2008 to 2017.


2014 ◽  
Vol 14 (1) ◽  
pp. 485-503 ◽  
Author(s):  
H. Zhang ◽  
S. P. DeNero ◽  
D. K. Joe ◽  
H.-H. Lee ◽  
S.-H. Chen ◽  
...  

Abstract. A source-oriented version of the Weather Research and Forecasting model with chemistry (SOWC, hereinafter) was developed. SOWC separately tracks primary particles with different hygroscopic properties rather than instantaneously combining them into an internal mixture. This approach avoids artificially mixing light absorbing black + brown carbon particles with materials such as sulfate that would encourage the formation of additional coatings. Source-oriented particles undergo coagulation and gas-particle conversion, but these processes are considered in a dynamic framework that realistically "ages" primary particles over hours and days in the atmosphere. SOWC more realistically predicts radiative feedbacks from anthropogenic aerosols compared to models that make internal mixing or other artificial mixing assumptions. A three-week stagnation episode (15 December 2000 to 6 January 2001) in the San Joaquin Valley (SJV) during the California Regional PM10 / PM2.5 Air Quality Study (CRPAQS) was chosen for the initial application of the new modeling system. Primary particles emitted from diesel engines, wood smoke, high-sulfur fuel combustion, food cooking, and other anthropogenic sources were tracked separately throughout the simulation as they aged in the atmosphere. Differences were identified between predictions from the source oriented vs. the internally mixed representation of particles with meteorological feedbacks in WRF/Chem for a number of meteorological parameters: aerosol extinction coefficients, downward shortwave flux, planetary boundary layer depth, and primary and secondary particulate matter concentrations. Comparisons with observations show that SOWC predicts particle scattering coefficients more accurately than the internally mixed model. Downward shortwave radiation predicted by SOWC is enhanced by ~1% at ground level chiefly because diesel engine particles in the source-oriented mixture are not artificially coated with material that increases their absorption efficiency. The extinction coefficient predicted by SOWC is reduced by an average of 0.012 km−1 (4.8%) in the SJV with a maximum reduction of ~0.2 km−1. Planetary boundary layer (PBL) height is increased by an average of 5.2 m (1.5%) with a~maximum of ~100 m in the SJV. Particulate matter concentrations predicted by SOWC are 2.23 μg m−3 (3.8%) lower than the average by the internally mixed version of the same model in the SJV because increased solar radiation at the ground increases atmospheric mixing. The changes in predicted meteorological parameters and particle concentrations identified in the current study stem from the mixing state of black carbon. The source-oriented model representation with realistic aging processes predicts that hydrophobic diesel engine particles remain largely uncoated over the +7 day simulation period, while the internal mixture model representation predicts significant accumulation of secondary nitrate and water on diesel engine particles. Similar results will likely be found in any air pollution stagnation episode that is characterized by significant particulate nitrate production. Future work should consider episodes where coatings are predominantly sulfate and/or secondary organic aerosol.


1980 ◽  
Vol 58 (2) ◽  
pp. 143-148 ◽  
Author(s):  
Yasuhiro Sasano ◽  
Hiroshi Shimizu ◽  
Ichiro Matsui ◽  
Nobuo Takeuchi ◽  
Michio Okuda ◽  
...  

2010 ◽  
Vol 49 (12) ◽  
pp. 2574-2590 ◽  
Author(s):  
Eduardo Barbaro ◽  
Amauri P. Oliveira ◽  
Jacyra Soares ◽  
Georgia Codato ◽  
Maurício J. Ferreira ◽  
...  

Abstract This work describes the seasonal and diurnal variations of downward longwave atmospheric irradiance (LW) at the surface in São Paulo, Brazil, using 5-min-averaged values of LW, air temperature, relative humidity, and solar radiation observed continuously and simultaneously from 1997 to 2006 on a micrometeorological platform, located at the top of a 4-story building. An objective procedure, including 2-step filtering and dome emission effect correction, was used to evaluate the quality of the 9-yr-long LW dataset. The comparison between LW values observed and yielded by the Surface Radiation Budget project shows spatial and temporal agreement, indicating that monthly and annual average values of LW observed in one point of São Paulo can be used as representative of the entire metropolitan region of São Paulo. The maximum monthly averaged value of the LW is observed during summer (389 ± 14 W m−2; January), and the minimum is observed during winter (332 ± 12 W m−2; July). The effective emissivity follows the LW and shows a maximum in summer (0.907 ± 0.032; January) and a minimum in winter (0.818 ± 0.029; June). The mean cloud effect, identified objectively by comparing the monthly averaged values of the LW during clear-sky days and all-sky conditions, intensified the monthly average LW by about 32.0 ± 3.5 W m−2 and the atmospheric effective emissivity by about 0.088 ± 0.024. In August, the driest month of the year in São Paulo, the diurnal evolution of the LW shows a minimum (325 ± 11 W m−2) at 0900 LT and a maximum (345 ± 12 W m−2) at 1800 LT, which lags behind (by 4 h) the maximum diurnal variation of the screen temperature. The diurnal evolution of effective emissivity shows a minimum (0.781 ± 0.027) during daytime and a maximum (0.842 ± 0.030) during nighttime. The diurnal evolution of all-sky condition and clear-sky day differences in the effective emissivity remain relatively constant (7% ± 1%), indicating that clouds do not change the emissivity diurnal pattern. The relationship between effective emissivity and screen air temperature and between effective emissivity and water vapor is complex. During the night, when the planetary boundary layer is shallower, the effective emissivity can be estimated by screen parameters. During the day, the relationship between effective emissivity and screen parameters varies from place to place and depends on the planetary boundary layer process. Because the empirical expressions do not contain enough information about the diurnal variation of the vertical stratification of air temperature and moisture in São Paulo, they are likely to fail in reproducing the diurnal variation of the surface emissivity. The most accurate way to estimate the LW for clear-sky conditions in São Paulo is to use an expression derived from a purely empirical approach.


Sign in / Sign up

Export Citation Format

Share Document